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The concept of H-sets with respect to a fintte-dimensional linear space of appros
imation i oxtremely important, as these sets unify the theory of Chebyshey appros
maiion by yielding a charaeterization of best approximants and conditions fos
uniqueness, and are also aids in the construction of algorithms for sumericy
computation. We study here the geometric characterization of 77 <ots in tern
convex polvhedral cones or, in special cases. stmplices. In particolae wy vos

the characterization of minimal H sets and use this 1o find an snper hound tor the

number of possible minimal 77 sets with respect 1o g findte dimensional space

INTRODUCTION

The importance of H-sets in the study of best Chebyshev approximaiion
has been highlighted in |1-5. 7 9. 12]. The characterization of best approx
imants was discussed in 1. 3-5. 8] and a study was made m |2, 91 of the
problem of finding the set of best approximants in the non uniqueness case.
Using the characterization, an algorithm was suggested in {2! for computing
a best approximation to a continuous function by a space of functions not
satisfving the Haar condition.

The construction of H-sets for particular linear spaces has been sundid
15-7]. where attention has been focused on the multivariawe et ‘
|6. 7] some topological properties are given of H-sets with respe. o the
space of polynomials of degree at least m in 2 variables.

Here we consider the problem of characterizing H-sets poos . vcaily
Although such a characterization for a particular type of space of real
valued functions was made in [ 11]. here we extend this concept o gencral /-
sets with respect to g linear subspace of functions. devoting special attention
to minimal H-sets. We characterize minimal # sets in terms of convex
polyhedral cone intersections and arrive at an upper bound for the number of
possible minimal H-sets with respect to an n-dimensional subspace.

Although most problems in approximation theory concern continuous
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real- or complex-valued functions. we consider the more general setting of
functions with values in some normed linear space. In this general setting the
same characterization of best approximation exists and also similar theorems
concerning unigqueness, strong unicity, and maximal linear functionals (sec
[31]). For general definitions in topological vector spaces we follow [10].

DEFINITIONS

Let X be a compact topological space and Y a Banach space over the
scalar field K=1 or . We denote by C(X,Y) the space of continuous
functions defined on X with values in Y over the same scalar field K. We
denote by Y* the dual space of Y consisting of all continuous linear
functionals defined on Y. We define by . the unit sphere in Y'*, ie. / =
1€ Y* ] = 1}, where the norm is the usual operator norm in Y*,

We consider H-sets with respect to a finite-dimensional linear subspace
of Cp(X.Y) which has g,..... g, as a basis. If K =, we extend this basis to
enc of dimension 2n over [¥ in the usual fashion. We denote by 7°* the
positive orthant of 1** and denote by #, the zero vector in F-".

DerFiniTioN 1. The set of & poinis x,...., x, in X together with A elements
Yywody of » form an H-set with respect to V., denoted by [{xf. (L1 k] if

and only if there exists 4 € % such that

b,

where #, = [ |g{x).j= L. hkii=1...n

f)

DerFmviTION 2. The H-set |{x;}. {[;i, k| is a minimal H-set with respect 1¢
V.4l ] if no proper subset of |jx,i. /. k| can form an H-set with respect

to I,

This definition of minimal H-set is dependent on the set {/,{ and it is
certainly feasible that there exists a set {//} in .7 such that [{x,} {1 k] is
an H-set with respect to V' and not minimal with respect to V. {1}
However, we can deduce the following:

LemMma 1. x4k is @ minimal H-set with respect to [V, {L{] if
and only if" there exists only owne solution, up to a scalar multiple. (o
Ai=0 . with L€ R .

Progf.  Suppose |{x;}, {/;}. k] is a minimal H-set with respect to [V, {/;}].
From the definition of an H-set there exists a 4 € R* such that  #1 =4,,.
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Let 4 € F* be such that . #u = #, and choose p = min,{—4,/u;: 4, # 0} then
A+pue it | #(A+ pu)=6, and at least one component of 4 + pu is zero.
Hence if —4 # pu, then [{x,1, {{;}. k| is not minimal with respect to |V, {/;}].

Conversely, if there exists a A € R* such that. #4 = 8, then |{x;}. {/;}. k|
i1s an H-set with respect to V. If there is only one such solution then no
component of 4 can be made zero. Hence ||}, 1/;}. k| is minimal with
respect to [V, {{;1].

An important feature of this lemma is

COROLLARY 1. [f for ||x;}b, {1} k| there is a A € R* and u € 1?* such
that #A=.#u=1»0, and u is not a simple multiple of J then [{x,}. ;1. k| is
not a minimal H-set with respect to |V, {l.1].

It is also immediate from the lemma that

CoroLLARY 2. [If Y=K and |{x; {LL.k]| is a minima[ H-set with
respect to |V, {1,}] then every choice of {I!}. such that |{x;}, 1]\ k| is an H-
set with respect to V. makes this H-set minimal.

DerFmniTioN 3. Define the operator #, mapping elements x, € X of the
H-set M = |{x1, 11,1, k| with respect to } into K", such that

Zx = (L g e L g0 -

For brevity we write # (M) for the range of # with domain {x,} of M.

DerFINITION 4. The  subsets M, =[x /i7" k] and M, =
Hx, (2 k, | form an H-partition |M . M,]| of the Hset M =M, UM,
with respect to V' if and only if

{a) neither M, nor M, are void:
(b) M, MM,=3O (empty set):
{c) neither M, nor M, form an H-set with respect to V.

DermnITION 5. An H-partition |M,, M, | is canonical if and only if there
exists a A € 1% | a solution to #A =46, for the H-set M =M UM, with
respect to V. such that

Nod= N g

el iet,

where [, = {iix; €M L p=1.2
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The convex hull of a set 4 we shall denote by #(4) and the convex
polyhedral cone of a finite set 4 by #(4); thus

H(A) = }iiiai:aiGA,).i >0and N 4, = Ig‘

#(A)= ;}_’iia,-:aiEA.}»,-> O%.

The points of a finite set 4 = {a,...., a,} are pointwise independent if the
r— 1 elements {a, —a,,..,a,—a,} are linearly independent. For such a set
A, #(A) is a simplex of order r — 1.

CHARACTERIZATION

The characterization of H-sets in the framework of these concepts follows
directly.

THeorem 1. If M, M,| is an H-partition of the H-set M=
[ 1L k| with respect to V, then F(F (M) YF(—# (M,)) is not empty.

Conversely, given M, = [{x{VL 10 k| and M, = [IxP 0 11k, | with
M NM,=0, if €(F (M) NF(—# (M,)}) is not empty. then M =M, UM,
is an H-set with respect to V.

Proof.  From Definition 1 there are positive real values 2,...., 4, such that

_\,: AF () =N A(—F (x).
7 [

where /[, =1{iix, €M}, p=1,2: this defines a ray in #(¥ (M)

#(—# (M,)). This argument is reversed to prove the converse.

THEOREM 2. Given the conditions as in Theorem 1. [M,,M,| forms a
canonical H-partition of M=M, UM, if and only if #{#M,))M
F(—#(M,)) is not emply.

Proof.  The proof is the same as for Theorem | except that in this case
we can choose the 4;, /= ..., k, such that

i’ll’::if: 1.

1 7,

We note that not all H-sets have a canonical H-partition, as the following
counterexample using real-valued functions shows.
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ExampLe 1. Let ¥ =span{x, r.z}: we have an H-set || p;i. {/,}. 3] with
respect to V' where

p=(1.0.-1n /= - L
D= (01011 o
po={l. 1 -2k fvor b

The solution to. #4 = ¢, is (1. 1. |} which does not have a canonical decom-
position.

Theorem 2 is an extension of the characterization given in [11], where it
was assumed that the functions in V7 were real-valued and the constant
function was an element of }. In such & case a canonical H-partition always
exists. We note that our proot is simpler than that given in {11] for this casc.

MiniMarL H-SETS

The important applications of Theorems 1 and 2 arise when mimmal #/-
sets are considered. The characterization of minimal H-sets ajlows us to find
how many possible such sets can be constructed, thus answering the question
posed in |11]. A simple observation concerning minimal H-sets is the
following.

THEOREM X M = |y, 1 k] forms g minimal H-set with respect 1o
o] i and only if no x, < lx; exists such that #ix)y is a linear

combination of less than k 1 vectors #(x,), i # p.
Proof.  Without loss of generality suppose
.

) = L KRS N
z

From Definition | we have that there exist positive A,. i = ... k. such
that

s

A
S AF ) =t
i

From our supposition and this equation we have

,
AN (x)+ N 4
i
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and as r < k — 1 the coefficients of # (x;), i = l,.... k — 1, cannot all be zero.
Hence from the Corollary 1 of Lemma 1. |{x;}. {/;}, k] is not minimal with
respect to [V, {/;1] and the result follows,

Conversely. suppose M is not minimal with respect to |V, {/;}|. then we
have two solutions 4,...4, and g,...g; such that . Zi= Fu="0, A
u €% and A # pu for any scalar p, hence the ratio of least two components
of A and g are different. thus we assume A,/u, # A, /u, ,. Hence

>

1

A ()= N A F ().
1

Kb
—u A= N A )
i
therefore
k

)= ,\_ (g A Ay ) F) gy = Aty )
1

Dat

and the result follows.
In terms of our Characterization Theorem | we have the following.

THECOREM 4. Let M, =|{x;\ i i=lo.r] and M,=[{x; 1L i=
F ot Voo k| such that MM, = @: then M =M UM, is a minimal H-set
with respect 1o |V i and only if U= 7(F (M) N7 (—#(M,)) consisis

1

of u rav which does not lie on a face of either cone when | < r< k1.

Proof.  We first prove that U consists of a single ray. Suppose in {7 we
have two distinct rays defined by

() and

.
N W (x) in F(EF(M))
i

N (x))) and u(—7(x;) in F(—F(M,)).

As these rays are distinct. the vectors 2 = (4, ... 4,) and g = (4, . ) € 125
and are solutions to #A=. Au=0, such that A#au for any .
contradicting the minimality of M.

Conversely, if such A and g exist we can define two rays.

To show that this single ray is interior to each cone we use Theorem 3. If
the ray lay on the face of #(# (M,)), which without loss of generality we
assume to be generated by A = {¥ (x;):i=2,...,r}, then # (x,) would be a
linear combination of 4, contradicting Theorem 3. Similarly for #(—# (M,)).

For a consideration of H-sets where a canonical H-partition exists, we
need the following.
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THEOREM 5. Let M = [{x;}, {I;}. k| be a minimal H-set with respect to
Vo] and N =[x 4 i = Ler|, v < k; then #(N) forms a pointwise
independent set.

Proof. First consider the case when r < k.
Let p;=#(x;,)—#(x,), i=2..,r. and suppose these p, are linearly
dependent. We then have «,, i = 2...., r, not all zero such that

If we define

then

: a;p;= l__ w#(x;) =10
2 1
and hence the vector (¢,..... ¢,.0,...) € ** is a solution to. #u« = #,. which
contradicts the minimality of M from Corollary 1 of Lemma 1.
For the case when r = k there does exist a solution to

N

(x;)=10,

1 1

k
AR
1
where «; > 0. For p,. i=2...., r, as above to be linearly independent. «, must
be chosen similarly to «, above. This makes ¢, < 0, a contradiction.

We can now consider the case of H-sets with a canonical H-partition.

THEOREM 6. Let M, = |{x{"\ {I{V k.| and M,= |{x{" 407k,
M, NM,=9¢. Then M=M, UM, is a minimal H-ser with respect (0
|V, {{;}] with canonical H-partition |M,. M.} if and only if #(# (M))) and
F(—F (M,)) are simplices, whose intrsection consists of a single vector
interior to both simplices.

Proof. The fact that they are simplices follows from Theorem 5. The
single vector interior to both simplices is that vector where the single ray
F(EF (M) N#(—# (M,)) of Theorem 4 passes through the simplices.

We can now consider the question, originally posed in |11}, of how many
possible minimal H-sets with respect to V can there be. A study was made in
|12] for the particular case of the (n+ l)-dimensional space I =
span{l, x,....x, with x; € 1*. There it was found that the minimal H-sets
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with respect to V' could be enumerated, and the precise number was given.
We note here that neither the degenerate case with x; = 0 for all / is possible
due to the constant function being an element of V, nor can a minimal H-set
with two points be formed for the same reason. Both of these cases are
possible if the constant function is not an element of V, as is the case, for
example. for V = span{x, y}. We are, therefore, able to obtain the following
value for the maximum number of possible minimal H-sets. We note that this
value is attained for the case of V =spanix,.x,,...x,} with x,€ ¥. On the
other hand, for approximating sets satisfying the Haar condition there can
only be one minimal H-set.

THEOREM 7. Let V be a space of dimension n; then at most h(n)
minimal H-sets with respect to V are possible where

hmy=k*+k +1 i n=2k,
=k*+ 2k +2 i n=2k+ 1

Proof. We first note that from Definition | the maximum number of
points / in a minimal H-set |{x;} {/,}. k] with respect to | V. {[;}]is n + L.

Suppose a minimal H-set |{x;}. {;}. k]| with respect to |V, {/;}]| does not
have a canonical H-partition. We can for this case construct a diagonal
matrix D, with diagonal (1.1, a. 1., 1), such that

7D 'Di=9,.

giving a minimal H-set with respect to |V, {{;}] and having a canonical H-
partition.

We say that all minimal H-sets with respect to |V, i/,i| are basically the
same, and. therefore, only count them once. if they have the same p, ¢ where
IM,.M,| is a canonical H-partition of the H-set or projected canonical H-
partition as above for the non-canonical case. For reasons of symmetry we
presume p > g.

We are thus led to the conclusion that the number of basically different
minimal {{-sets of size j is given by the number of pairs p. ¢ such that p >
g1 and p+q=j This value is |(j —2)/2]|+ 1. where | | denotes the
greatest integer. If we add on the possibility of the degenerate case mentioned
above then A{n) must be

ned -y
\‘ﬁi;iJ !
M,-“f‘z?[ 5 +1\,

which gives the result as stated in the theorem.
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